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An Extension of Gleason’s Theorem
for Quantum Computation

Abbas Edalat

We develop a synthesis of Turing’s paradigm of computation and von Neumann’s quan-
tum logic to serve as a model for quantum computation with recursion, such that po-
tentially non-terminating computation can take place, as in a quantum Turing machine.
This model is based on the extension of von Neumann’s quantum logic to partial states,
defined here as sub-probability measures on the Hilbert space, equipped with the natural
point-wise partial ordering. The sub-probability measures allow a certain probability
for the non-termination of the computation. We then derive an extension of Gleason’s
theorem and show that, for Hilbert spaces of dimension greater than two, the partial
order of sub-probability measures is order isomorphic with the collection of partial
density operators, i.e. trace class positive operators with trace between zero and one,
equipped with the usual partial ordering induced from positive operators. We show that
the expected value of a bounded observable with respect to a partial state can be de-
fined as a closed bounded interval, which extends the classical definition of expected
value.

KEY WORDS: quantum logic; Gleason’s theorem; halting problem; quantum pro-
gramming language; interval expected value.

1. INTRODUCTION

The rigorous mathematical foundation of quantum mechanics is generally
agreed to be based on von Neumann’s formulation, which uses the notion of a
state of quantum logic, a probability measure on the collection of quantum events,
i.e., on the closed subspaces of the Hilbert space (von Neumann, 1955; Varasarajan,
1970). An observable, discrete or continuous, is defined as a mapping from the
Borel subsets of the real line to the collection of states of the quantum logic. These
two notions are then used to derive the expected value of an observable, which
provides a consistent quantum theory treating discrete and continuous observables
in a uniform manner. Gleason’s fundamental theorem shows that, for Hilbert spaces
of dimension greater than two, the states of logic are in one to one correspondence
with density operators, i.e. trace class operators on the Hilbert space with trace
one, and thus allows us to work with the more convenient density operators instead
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of the probability measures on the collection of closed subspaces of the Hilbert
space.

In this paper, we aim to synthesize von Neumann’s formulation of quantum
mechanics with Turing’s paradigm of computation, in which classical iteration or
recursion plays a foundation role.

All standard programming languages allow for non-trivial recursion, a funda-
mental feature of computation which can potentially result in the nontermination
of programs. In a pioneering paper in 1936, Alan Turing proved that it is not
decidable in general if a program terminates, i.e. one cannot in general deter-
mine, in a finite amount of time, if a given program terminates on a given input
(Turing, 1936, 1937). This extremely important result in computer science has
since been called “the halting problem.” It is a basic consequence of the halting
problem that in probabilistic programs, when one computes the probability of the
outcome of an event as in quantum computation, sub-probability measures, rather
than probability measures, are used to model the probabilistic results: the total
probabilities of the definite outcome add up to a number less than one, allowing a
certain probability for the non-termination of the program; see for example (Kozen,
1981).

To reconcile von Neumann’s quantum logic with the halting problem, we
therefore consider sub-probability measures on quantum events, i.e. measures µ

on the closed subspaces of the Hilbert space H such that 0 ≤ µ(H) ≤ 1, which
we call partial states of the quantum logic. There is a natural partial order on
partial states: µ1 ≤ µ2 if µ1(A) ≤ µ2(A) for all closed subspace A of H, i.e.,
for any quantum event the probability of outcome with respect to µ2 is at least
as much as that of µ1, which implies that the probability of non-termination for
µ2 is at most that of µ1. This partial order is complete in that any increasing
chain has a supremum, more generally it is directed complete in the sense that
any directed set has a supremum. Recall that a non-empty subset of a partially
ordered set is directed if for any two elements in the subset there is an ele-
ment of the subset above both; thus a directed subset is a generalization of an
increasing chain in a partial order. A directed set of partial states represents a
consistent set of computations: for any pair of partial states in the set, there ex-
ists a partial state in the set that assigns to each quantum event a probability at
least as great as either of those assigned to the quantum event by the two partial
states.

We then consider trace class positive operators, also known as von Neumanns’
operators, with trace between zero and one, which we call partial density operators,
equipped with the partial ordering given by B ≤ A if A − B is a positive operator.
This partial order is also directed complete, i.e., any directed subset has a supre-
mum. We show that, for Hilbert spaces of dimension greater than two, Gleason’s
onto map from the collection of density operators to that of states of quantum logic
extends to an order isomorphism between the directed complete partial order of
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partial density operators and that of the partial states of the logic, preserving the
supremum of directed subsets. Any directed complete partial order is equipped
with a natural T0 topology, the so-called Scott topology, which corresponds to the
convergence of a directed set to its supremum. The extended Gleason map is then
continuous with respect to the Scott topologies of the directed complete partial
orders of the partial density operators and the partial states of the quantum logic.
All in all, this shows that partial density operators provide a convenient model for
quantum computation with recursion. The partial order of partial density operators
has already been used in (Selinger, 2003) to develop a functional programming
language for quantum computation. In a typical recursive computation, the partial
density operator in each loop of iteration increases in the partial order and in the
limit one obtains the supremum of this increasing chain of partial density opera-
tors, which can indeed be a usual density operator; (see Selinger, 2003, Section
5.5) for an example.

Finally, we consider any bounded observable, with a discrete or continuous
spectrum, given as a map from the Borel subsets of the real line to the lattice of
closed subsets of the Hilbert space. We define the expected value of the observable
with respect to a partial state as a compact real interval and show that, for a
fixed bounded observable, the expected value as a function from the directed
complete partial order of partial states to the directed complete partial order of the
collection of non-empty compact intervals ordered by reverse inclusion is Scott
continuous. This means that, for a given bounded observable and an increasing
sequence of partial states converging to a (partial) state, the sequence of expected
values is a nested shrinking sequence of bounded closed intervals, which converge
to the expected value of the bounded observable with respect to this (partial) state.
Therefore, our notion of expected value as a compact interval extends the standard
notion of expected value in probability theory.

By the spectral theory of operators, the bounded observables are in one-to-one
correspondence with bounded self-adjoint operators on the Hilbert space. We thus
obtain the expected value of a bounded self-adjoint operator with respect to a partial
density matrix and show that for a fixed partial density operator, the expected value,
as an interval-valued map, depends linearly on commuting bounded self-adjoint
operators.

2. PARTIAL STATES OF QUANTUM LOGIC

To fix our notations, we briefly review von Neumann’s formulation of the
states of quantum logic. Let H be a separable (finite or infinite dimensional)
Hilbert space over the complex numbers. We denote the set of closed sub-spaces
of H partially ordered by inclusion by S(H). A closed subspace is also referred
to as a quantum event. Then S(H) is a non-distributive complete lattice with
A ∧ B = A ∩ B and A ∨ B = span{A, B}, the subspace generated by A and B.
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A probability measure on S(H) is a mapping p : S(H) → [0, 1] such that

(i) p({0}) = 0,
(ii) p(H ) = 1,

(iii) p(
∨

n≥0 An) = ∑
n≥0 p(An), for any sequence An of mutually orthogo-

nal subspaces An .

A state of the quantum logic or of quantum events is a probability measure on
S(H); it gives the probability of each event A ∈ S(H) and thus all the information
required to compute any physical property of the system. We now consider any
quantum programming language, which computes probabilities of quantum events
and is allowed to use recursion. A partial state of the quantum logic is defined as
a sub-probability measure of S(H), i.e., as a mapping p : S(H) → [0, 1] such that

(i) p({0}) = 0,
(ii) p(H ) ≤ 1,

(iii) p(
∨

n≥0 An) = ∑
n≥0 p(An), for any sequence An of mutually orthogonal

subspaces.

The number 1 − p(H ) ≥ 0 is the probability of non-termination of the program
or the computation process. We note that this number, and hence the probabil-
ity of termination, can be non-computable when the Hilbert space H is infinite
dimensional.

In fact, for an orthonormal basis (ei )i≥0 ofH and any non-computable number
a between 0 and 1, there is a sub-probability measure p on H with p(H) = a, such
that p assigns a rational number to any finite subspace generated by (ei )i≥0. Such
p can be defined as follows. We consider the binary expansion of a:

a =
∑
i≥0

ai

2i+1
, (1)

where ai ∈ {0, 1} for i ≥ 0 and define the partial state p by its values on the
basis vectors as p(span{ei }) = ai

2i+1 . Then p assigns a rational number to any finite
dimensional subspace generated by the orthonormal basis (ei )i≥0 and we have
p(H) = a.

There is a natural notion of partial order on partial states. For two partial states,
we define p1 ≤ p2, if for all quantum events A ∈ S(H), we have p1(A) ≤ p2(A),
i.e., p2 gives more probability to any quantum event and is more likely to terminate
compared to p1. We need the following lemma, which is a generalization of a
corresponding well-known result for double sequences of real numbers.

Lemma 1. If (ai j )i∈I , j∈J is a double indexed bounded subset of real numbers,
which is directed in each index, then

sup
i∈I

sup
j∈J

ai j = sup
j∈J

sup
i∈I

ai j . (2)
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Proposition 2.1. The partial order on partial states is directed complete.

Proof: Given a directed subset (pi )i∈I of partial states, consider the map p :
S(H) → [0, 1] given by p = supi∈I pi , i.e., p(A) = supi∈I pi (A) for any Borel
subset A ⊆ R. Clearly p({0}) = 0 and p(H ) ≤ 1. Suppose (A j ) j≥0 is a sequence
of mutually orthogonal subspaces. For each i ∈ I we have by assumption: pi (

∨
n≥0

An) = ∑
n≥0 pi (An). Let Bi j = ∑ j

n=0 pi (An) be the partial sum of the infinite
series of non-negative terms pi (

∨
n≥0 An). Then the bounded double indexed subset

(Bi j )i∈I , j≥0 of non-negative numbers is directed in each index. It follows from the
lemma that we can change the order of taking suprema in Bi j and thus:

p

(∨
n≥0

An

)
= sup

i∈I
pi

(∨
n≥0

An

)

= sup
i∈I

sup
j≥0

Bi j

= sup
j≥0

sup
i∈I

Bi j

= sup
j≥0

sup
i∈I

j∑
n=0

pi (An)

= sup
j≥0

j∑
n=0

p(An)

=
∑
n≥0

p(An)

It follows that p is a partial state. It is easy to check that p is indeed the supremum
of the subset (pi )i∈I . �

We denote the complete partial order of partial states (sub-probability mea-
sures) by M(S(H)) and the set of states (probability measures) by M1(S(H)).

3. EXTENSION OF GLEASON’S THEOREM

Consider the set D1 of density operators, in other words, positive linear op-
erators f : H → H of trace class with trace equal to one, i.e., 〈x | f x〉 ≥ 0 for all
x ∈ H which we write as f ≥ 0, and tr( f ) = ∑

i≥0〈ei | f ei 〉 = 1 for an orthonor-
mal basis (ei )i≥0 of H. In fact, the trace of a positive operator is independent
of the orthonormal basis. Consider the linear map G : D1 → M1(S(H)) given
by G( f ) : S(H) → [0, 1] with G( f )(K ) = tr(P K f ), where P K is the orthogonal
projection onto the closed subspace K ∈ S(H). The following celebrated theorem
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was assumed by von Neumann, then conjectured by Mackey and finally proved by
Gleason. A more elementary proof was later provided in Cooke et al. (1985).

Theorem 3.1. (Gleason, 1957) The map G is onto if the dimension of H is
greater than two.

To obtain an extension of Gleason’s theorem for partial states, we consider
the notion of partial density operators. A positive linear operator f : H → H of
trace class is a partial density operator if tr( f ) ≤ 1. Partial density operators are
equipped with the usual partial ordering of operators, namely g ≤ f if f − g is
a positive operator, written as: f − g ≥ 0. Let D be the partial order of partial
density operators. We use the following result of Vigier.

Theorem 3.2. (Thirring, 1979, p. 51) Every norm bounded increasing filter of
operators has a supremum.

Corollary 3.1. The partially ordered set of partial density operators is directed
complete.

Proof: A directed set in D is an increasing filter with respect to the partial
order. Since for any operator f ∈ D, we have ‖ f ‖ ≤ tr( f ) ≤ 1, it follows that
any directed set in D is bounded with respect to the operator norm and the result
follows from the above theorem. �

Recall that for directed complete partially ordered sets R and S, a mapping h :
R → S is an order isomorphism if h is one-to-one, onto, monotone (h(x) ≤ h(y)
if x ≤ y) and reflects the partial order (x ≤ y if h(x) ≤ h(y)). We note that any
order reflecting map is necessarily one-to-one: h(a) = h(b) implies h(a) ≤ h(b)
and h(b) ≤ h(a), from which it follows that a ≤ b and b ≤ a, i.e., a = b.

Proposition 3.1. If h : R → S is an order isomorphism, then it preserves the
supremum of directed subsets, i.e., supı∈I h(ai ) = h(supi∈I ai ) for any directed
subset (ai )i∈I .

Proof: By monotonicity of h we have: supi∈I h(ai ) ≤ h(supi∈I ai ). Since h is
onto, there exists a ∈ R such that h(a) = supi∈I h(ai ). Thus, for each i ∈ I , we
have: h(ai ) ≤ h(a)) ≤ h(supi∈I ai ). By order reflection, it follows that for i ∈ I ,
we have: ai ≤ a ≤ supi∈I ai . Hence, a is an upper bound of the directed subset
(ai )i∈I and therefore supi∈I ai ≤ a, which implies a = supi∈I ai . �

We will now state and prove the extension of Gleason’s map to partial density
operators and partial states.
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Theorem 3.3. For Hilbert spaces of dimension greater than two, the directed
complete partially ordered sets of the partial density operators and the partial
states are order isomorphic.

Proof: Consider the linear extension G : D → M(S(H)) given by G( f ) : S(H)
→ [0, 1] with G( f )(K ) = tr(P K f ), where P K is as before the orthogonal projec-
tion onto the closed subspace K ∈ S(H). To show that G is monotone, suppose
g ≤ f and assume K ∈ S(H). Let (ei )i≥0 be a complete orthonormal set of eigen-
vectors of P K . Then,

trP K ( f − g) =
∑
i≥0

〈ei |P K ( f − g)ei 〉

=
∑
i≥0

〈P K ei |( f − g)ei 〉

=
∑

P Kei =ei

〈ei |( f − g)ei 〉 ≥ 0.

To show that G is order reflecting, assume G(g) < G( f ). If, for some x ∈ H with
‖x‖ = 1 we have 〈x |( f − g)x〉 < 0, then by taking K to be the subspace generated
by x and using an orthonormal basis (ei )i≥0 with e0 = x , we obtain:

G( f ) − G(g) = trP K ( f − g)

=
∑
i≥0

〈ei |P K ( f − g)ei 〉

=
∑
i≥0

〈P K ei |( f − g)ei 〉

= 〈x |( f − g)x〉 < 0,

which gives a contradiction. This proves order reflectivity, from which it follows
that G is one-to-one. The subjectivity of G from Gleason’s theorem by noting that
for 0 ≤ r ≤ 1 and all f ∈ D, we have: G(r f ) = rG( f ). �

We note that the Scott topology of a directed complete partial order A is given
as follows. The open subsets of the Scott topology are those subsets O ⊆ A such
that (i) O is upward closed, i.e., x ∈ O and x ≤ y implies y ∈ O , and (ii) O is
inaccessible by directed subsets, i.e., whenever supi∈I xi ∈ O for a directed subset
(xi )i∈I , then there exists i ∈ I with xi ∈ O . The Scott topology on a directed com-
plete partial order is in general T0 and is the canonical topology with respect to
which a directed set (net) converges to its supremum. In fact, in analogy with con-
tinuous maps between metric spaces, we have the following property: A mapping
h : A → B between directed complete partial orders is continuous with respect to
the Scott topologies of A and B if and only if f is monotone and preserves the
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supremum of directed subsets (Abramsky and Jung, 1997). We have thus obtained
canonical topologies on D and M(S(H)) with respect to which the one-to-one
correspondence between the partial density operators and the partial states is in
fact a homeomorphism:

Corollary 3.2. The map G : D → M(S(H)) is continuous with respect to the
Scott topology.

4. EXPECTED VALUES OF OBSERVABLES

Recall (Varasarajan, 1970) that an observable is a map r : B(R) → S(H)),
where B(R) is the collection of Borel subsets of the real line, such that:

(i) r (∅) = 0 and r (R) = H.
(ii) r (U ) and r (V ) are orthogonal subspaces if U ∩ V = ∅.

(iii) r (
⋃

n≥0 Un) = ∨
n≥0 r (Un) for any sequence (Un)n≥0 of Borel subsets.

The interpretation of the map r as an observable is that for the quantum event
r (U ) ∈ S(H), with U ⊆ R a Borel subset, the observable takes its values in U .
The observable r is bounded if there exists a > 0 such that r ([−a, a]) = H. The
spectrum Spec(r ) of r is the intersection of all closed subsets C ⊆ R such that
r (C) = H. By the spectral theory of operators, there is a one-to-one correspon-
dence between (bounded) observables and (bounded) self-adjoint operators on H
(Redd and Simon, 1980, pp. 235, 263), which are the standard representation of
observables in quantum mechanics.

If p : S(H) → [0, 1] is a state, then the composition Qr
p = p ◦ r : B(R) →

[0, 1] with Qr
p(U ) = p(r (U )) is a probability distribution on R and the expected

value of r in the state p is defined by

E(r |p) =
∫ ∞

−∞
td Qr

p(t),

when the integral exists. If r is a bounded observable and p = G( f ) for some
f ∈ D1, then the expected value of r with respect to p exists and is given by

E(r |p) = tr(Ar f ),

where Ar is the unique bounded self-adjoint operator corresponding to r
(Varasarajan, 1970, p. 61).

The following question now naturally arises. Given an observable, can we
define the expected value of a partial state, extending the classical definition of the
expected value with respect to a state? We will show here that we can do this in
a satisfactory way for the case of bounded observables by defining the expected
value with respect to a partial state as an interval rather than a real number.
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Consider the observable r with respect to a partial state p : S(H) → [0, 1]. Let
m = inf Spec(r ) and M = sup Spec(r ). The composition Qr

p = p ◦ r : B(R) →
[0, 1] with Qr

p(U ) = p(r (U )) is a sub-probability distribution on R. We
put

E0(r |p) =
∫ M

m
td Qr

p(t),

when the integral exists. When r is bounded, we define the expected value of r
with respect to the partial state p as the closed bounded interval:

E(r |p) = E0(r |p) + (1 − Qr
p(R))[m, M], (3)

where we have used the standard notation in interval arithmetic: k + [a, b] =
[k + a, k + b] for a real number k and a real interval [a, b]. The second term in
Equation 1 says that the missing probability, i.e. (1 − Qr

p(R)), is known to be
distributed on [m, M] but, at this stage of computation, its precise distribution on
this interval remains indeterminate. This uncertainty explains why the expected
value with respect to a partial state is an interval rather than a real number. For a
non-empty compact interval a, we use the notation a = [a, ā] for the left and right
end points of the interval.

Proposition 4.1. Suppose r is a bounded observable. If p ≤ q, then E(r |p) ⊇
E(r |q).

Proof: Let µ = Qr
q − Qr

p. Then by assumption µ is a nonnegative measure with
support in [m, M]. Thus: ∫ M

n
tdµ(t) ≥ µ([m, M])m,

and, hence, ∫ M

m
td Qr

q (t) −
∫ M

m
td Qr

p(t) ≥ (Qr
q (R) − (Qr

q (R))m.

It follows that E(r |p) ≤ E(r |q). Similarly, E(r |q) ≤ E(r |p). �

We now aim to show that our notion of expected value has the required limiting
properties.

Lemma 4.1. Suppose r is any observable. If (pi )i∈I is a directed set of partial
states with p = supi∈I pi and k : R → R is any measurable function such that
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∫ ∞
−∞ kd Qr

p exists, then ∫ ∞

−∞
kd Qr

p = lim
i∈I

∫ ∞

−∞
kd Qr

pi
,

where the limit is understood as the limit of the net (
∫ ∞
−∞ kd Qr

pi
)i∈I .

Proof: Let µi = Qr
pi

and µ = Qr
p. Let h : R → R be any simple function, i.e.,

h = ∑n
j=1 χB j for some measurable subsets Bi ⊆ R (1 ≤ j ≤ n), where χB is the

characteristic function of B. Then,

sup
i∈I

∫ ∞

−∞
hdµi = sup

i∈I

∫ ∞

−∞

n∑
j=1

χB j dµi

= sup
i∈I

n∑
j=1

µi (B j )

=
n∑

j=1

µ(B j )

=
∫ ∞

−∞

n∑
j=1

χB j dµ

=
∫ ∞

−∞
hdµ.

Assume first that k is nonnegative. Since the set of simple functions h with 0 ≤
h ≤ k is directed, from the above we obtain:∫ ∞

−∞
kdµ = sup

{∫ ∞

−∞
hdµ|nonnegative simple h ≤ k

}

= sup

{
sup
i∈I

∫ ∞

−∞
hdµi |nonnegative simple h ≤ k

}

= sup
i∈I

sup

{∫ ∞

−∞
hdµi |nonnegative simple h ≤ k

}

= sup
i∈I

∫ ∞

−∞
kdµi

= lim
i∈I

∫ ∞

−∞
kdµi .

This establishes the result for a positive function k. More generally, we split k
into its positive and negative parts and put k+ = max(k, 0) and k− = max(−k, 0),
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where 0 denotes the constant function with value zero. Since
∫ ∞
−∞ kd Qr

p exists, it
follows that both

∫ ∞
−∞ k+d Qr

p, and
∫ ∞
−∞ k−d Qr

p exist as well. From k = k+ − k−,
we obtain, using the result for a positive function:∫ ∞

−∞
kdµ =

∫ ∞

−∞
k+dµ −

∫ ∞

−∞
k−dµ

= lim
i∈I

∫ ∞

−∞
k+dµi − lim

i∈I

∫ ∞

−∞
k−dµi

= lim
i∈I

∫ ∞

−∞
k+ − k−dµi

= lim
i∈I

∫ ∞

−∞
kdµi .

�Corollary 4.1. If (pi )i∈I is a directed set of partial states, then for any observable
r such that E0(r | supi∈I pi ) exists, we have:

sup
i∈I

E0(r |pi ) = E0

(
r | sup

ı∈I
pi

)
.

We can now show that the expected value of an observable with respect to
a partial state has the desired limiting properties. Note that the collection of non-
empty compact intervals of the real line partially ordered by reverse inclusion,
denoted by IR, is a directed complete partial order, in which the supremum of a
directed set is the intersection of the compact intervals represented by the directed
set.

Theorem 4.1. For a given bounded observable r , the expected value map E(r |.) :
M(S(H)) → IR is Scott continuous.

Proof: We have already checked in Proposition 4.1 that the map E(r |.) is mono-
tone. Let (pi )i∈I be a directed set of partial states with p = supi∈I pi . Then, by
Corollary 4.3, we have:

lim
i∈I

E(r |pi ) = lim
i∈I

(E0(r |pi ) + m(I − Qr
pi

(R)))

= lim
i∈I

(
E0(r |pi ) + m

(
I − lim

i∈I
Qr

pi
(R)

))

= (E0(r |p) + m(1 − Qr
p(R))) − E(r |p).

Similarly, limi∈I E(r |p) = E(r |p) and thus:
⋂

i∈I E(r |p) = E(r |p). �
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The representation of observables as functions of type B(R) → S(H) has
serious drawbacks when studying the calculus of observables. For example, rep-
resenting a linear combination of commuting observables and computing its ex-
pected value in this setting are far from straightforward; (see Varasarajan, 1970,
pp. 125, 163). In fact, for this purpose, it is far simpler to represent observables as
self-adjoint operators on the Hilbert space.

Proposition 4.2. If Ar is the self-adjoint operator corresponding to the bounded
observable r and if p = G( f ) is a partial state with f a partial density operator,
then we have:

E0(r |p) = tr (Ar f ).

Proof: In case, p is a state, and hence f a density operator, the result follows from
(Varasarajan, 1970, Theorem 7.24). If p = 0 is the trivial partial state, then f is
the zero operator and we have E0(r |p) = tr(Ar f ) = 0. Otherwise k = p(H) > 0
and p/k is a state. By linearity of G, we have: G( f/k) = p/k. Now the linearity
of integration and the trace function implies:

E0(r |p) = k E0(r |p/k) = ktr(Ar f/k) = tr(Ar f ). �

Corollary 4.2. With the above notations:

E(r |p) = tr (Ar f ) + (1 − tr ( f ))[m, M].

Since every partial density operator f corresponds to a unique partial state G( f ),
we can now write the expected value of a bounded self-adjoint operator A with
respect to a partial density operator f as

E(A| f ) = tr(A f ) + (1 − tr( f ))[m, M],

where m = inf Spec(A) and M = sup Spec(A). Finally, we deduce that, as an inter-
val valued map, the expected value with respect to a partial state depends linearly
on commuting observables. For a bounded self-adjoint operator C , we write: mC =
inf Spec(C) and MC = sup Spec(C). Then [mkC , MkC ] = k[mC , MC ], for any real
number k. Furthermore, if two bounded observables A and B commute then they
will be simultaneously diagonalizable, and thus we have: m A+B = m A + m B and
MA+B = MA + MB , i.e.,

[m A+B , MA+B] = [m A, MA] + [m B , MB].



An Extension of Gleason’s Theorem for Quantum Computation 1839

Proposition 4.3. If A and B are commuting bounded self-adjoint operators, k
and � real numbers, and f a partial density operator, then

E(k A + �B| f ) = kE(A| f ) + �E(B| f ).

Proof: We have: [mk A+�B , Mk A+�B] = k[m A, MA] + �[m B , MB]. Hence,

E(k A + �B| f ) = tr((k A + �B) f ) + (1 − tr( f ))[mk A+�B , Mk A+�B]

= ktr(A f ) + �tr(B f ) + k(1 − tr( f ))[m A, MA]

+ �(1 − tr( f ))[m B , MB]

= kE(A| f ) + �E(B| f ).

�
One can also compute the expected value of various functions of an observ-

able. For example, for a bounded self-adjoint operator A and a partial density
operator f we have:

E(A2| f ) = tr(A2 f ) + (1 − tr( f ))[m A2 , MA2 ],

where m A2 = k2 and MA2 = K 2, with k = inf{|a| : a ∈ Spec(A)} and K =
sup{|a| : a ∈ Spec(A)}.

5. CONCLUSION

The extension of Gleason’s theorem to partial states and partial density matri-
ces, with the associated notion of expected value of bounded observables as com-
pact real intervals, provides a computer science framework for von Neumann’s
quantum logic and von Neumann’s operators. We have argued that in fact any
quantum computing language which includes non-trivial recursion has to allow a
certain probability for non-termination of the program. The quantum computing
language (Selinger, 2003), which handles quantum data with classical control, in-
cluding recursion, fits in this framework. It would be interesting to see how other
approaches to design quantum programming languages and model quantum pro-
cesses, e.g. (Sanders and Zuliani, 2000; Coecke and Martin, 2002; Abramsky and
Jung, 1994; van Tonder, 2003a,b; Jorrand and Lalire; Girard, 2003) will address
the issue of non-termination and will compute expected values in the presence of
recursion and thus how they will relate to this work.
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